Detecting Errors Before Reaching Them*

Luca de Alfaro, Thomas A. Henzinger, and Freddy Y.C. Mang

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720-1770, USA
{dealfaro,tah,fmang}Qeecs.berkeley.edu

Abstract. Any formal method or tool is almost certainly more often ap-
plied in situations where the outcome is failure (a counterexample) rather
than success (a correctness proof). We present a method for symbolic
model checking that can lead to significant time and memory savings for
model-checking runs that fail, while occurring only a small overhead for
model-checking runs that succeed. Our method discovers an error as soon
as it cannot be prevented, which can be long before it actually occurs; for
example, the violation of an invariant may become unpreventable many
transitions before the invariant is violated.

The key observation is that “unpreventability” is a local property of
a single module: an error is unpreventable in a module state if no en-
vironment can prevent it. Therefore, unpreventability is inexpensive to
compute for each module, yet can save much work in the state explo-
ration of the global, compound system. Based on different degrees of
information available about the environment, we define and implement
several notions of “unpreventability,” including the standard notion of
uncontrollability from discrete-event control. We present experimental
results for two examples, a distributed database protocol and a wireless
communication protocol.

1 Introduction

It has been argued repeatedly that the main benefit of formal methods is falsifi-
cation, not verification; that formal analysis can only demonstrate the presence
of errors, not their absence. The fundamental reason for this is, of course, that
mathematics can be applied, inherently, only to an abstract formal model of
a computing system, not to the actual artifact. Furthermore, even when a for-
mal model is verified, the successful verification attempt is typically preceded
by many iterations of unsuccessful verification attempts followed by model revi-
sions. Therefore, in practice, every formal method and tool is much more often
applied in situations where the outcome is failure (a counterexample), rather
than success (a correctness proof).

Yet most optimizations in formal methods and tools are tuned towards suc-
cess. For example, consider the use of BDDs and similar data structures in

* In Proceedings of CAV 2000, LNCS, Springer-Verlag, 2000. (©Springer Verlag, 2000.
This research was supported in part by the DARPA (NASA) grant NAG2-1214, the
SRC contract 99-TJ-683.003, the MARCO grant 98-DT-660, the DARPA (MARCO)
grant MDA972-99-1-0001, and the NSF CAREER award CCR-9501708.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2000 2. REPORT TYPE 00-00-2000 to 00-00-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Detecting Errors Before Reaching Them £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of California at Berkeley,Department of Electrical REPORT NUMBER

Engineering and Computer Sciences,Berkeley,CA,94720-1770

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

model checking. Because of their canonicity, BDDs are often most effective in
applications that involve equivalence checking between complex boolean func-
tions. Successful model checking is such an application: when the set of reachable
states is computed by iterating image computations, successful termination is
detected by an equivalence check (between the newly explored and the previously
explored states). By contrast, when model checking fails, a counterexample is
detected before the image iteration terminates, and other data structures, per-
haps noncanonical ones, may be more efficient [BCCZ99]. To point out a second
example, much ink has been spent discussing whether “forward” or “backward”
state exploration is preferable (see, e.g., [HKQ98]). If we expect to find a coun-
terexample, then the answer seems clear but rarely practiced: the simultaneous,
dove-tailed iteration of images and pre-images is likely to find the counterex-
ample by looking at fewer states than either unidirectional method. Third, in
compositional methods, the emphasis is almost invariably on how to decompose
correctness proofs (see, e.g., [HQR98]), not on how to find counterexamples by
looking at individual system components instead of their product. In this paper,
we address this third issue.

Consider a system with two processes. The first process waits on a binary
input from the second process; if the input is 0, it proceeds correctly; if the
input is 1, it proceeds for n transitions before entering an error state. Suppose
the second process may indeed output 1. By global state exploration (forward
or backward), n + 1 iterations are necessary to encounter the error and return
a counterexample. This is despite the fact that things may go terribly wrong,
without chance of recovery, already in the first transition. We propose to instead
proceed in two steps. First, we compute on each individual process (i.e., typically
on a small state space) the states that are controllable to satisfy the requirements.
In our example, the initial state is controllable (because the environment may
output 0 and avoid an error), but the state following a single 1 input is not
(no environment can avoid the error). Second, on the global state space, we
restrict search to the controllable states, and report an error as soon as they are
left. In our example, the error is reported after a single image (or pre-image)
computation on the global state space. (A counterexample can be produced
from this and the precomputed controllability information of the first process.)
Note that both steps are fully automatic. Moreover, the lower number of global
iterations usually translates into lower memory requirements, because BDD size
often grows with the number of iterations. Finally, when no counterexample is
found, the overhead of our method is mostly in performing step 1, which does
not involve the global state space and therefore is usually uncritical.

We present several refinements of this basic idea, and demonstrate the effi-
ciency of the method with two examples, a distributed database protocol and a
wireless communication protocol. In the first example, there are two sites that
can sell and buy back seats on the same airplane [BGM92]. The protocol aims at
ensuring that no more seats are sold than the total available, while enabling the
two sites to exchange unsold seats, in case one site wishes to sell more seats than
initially allotted. The second example is from the Two-Chip Intercom (TCI)

project of the Berkeley Wireless Research Center [BWR]. The TCI network is
a wireless local network which allows approximately 40 remotes, one for each
user, to transmit voice with point-to-point and broadcast communication. The
operation of the network is coordinated by a base station, which assigns chan-
nels to the users through a TDMA scheme. In both examples, we first found
errors that occurred in our initial formulation of the models, and then seeded
bugs at random. Our methods succeeded in reducing the number of global image
computation steps required for finding the errors, often reducing the maximum
number of BDD nodes used in the verification process. The methods are partic-
ularly effective when the BDDs representing the controllable states are small in
comparison to the BDD representing the set of reachable states.

To explain several fine points about our method, we need to be more formal.
To study the controllability of a module P, we consider a game between P
and its environment: the moves of P consist in choosing new values for the
variables controlled by P; the moves of the environment of P consist in choosing
new values for the input variables of P. A state s of P is controllable with
respect to the invariant Oy if the environment has a strategy that ensures that
o always holds. Hence, if a state s is not controllable, we know that P from
s can reach a —p-state, regardless of how the environment behaves. The set
Cp of controllable states of P can be computed iteratively, using the standard
algorithm for solving safety games, which differs from backward reachability only
in the definition of the pre-image operator. Symmetrically, we can compute the
set Cg of controllable states of () w.r.t. Oyp. Then, instead of checking that
P|| @ stays within the invariant O¢, we check whether P || @) stays within the
stronger invariant O(Cp A Cg). As soon as P || () reaches a state s that violates
a controllability predicate, say, C'p, by retracing the computation of Cp, taking
into account also @), we can construct a path of P || @Q from s to a state ¢ that
violates the specification ¢. Together with a path from an initial state to s, this
provides a counterexample to Oyp. While the error occurs only at ¢, we detect it
already at s, as soon as it cannot be prevented. The method can be extended to
arbitrary LTL requirements.

The notion of controllability defined above is classical, but it is often not
strong enough to enable the early detection of errors. To understand why, con-
sider an invariant that relates a variable z in module P with a variable y in
module @, for example by requiring that x = y, and assume that y is an input
variable to P. Consider a state s, in which module P is about to change the
value of z without synchronizing this change with @). Intuitively, it seems obvi-
ous that such a change can break the invariant, and that the state should not be
considered controllable (how can) possibly know that this is going to happen,
and change the value of y correspondingly?). However, according to the classical
definition of controllability, the state s is controllable: in fact, the environment
has a move (changing the value of y correspondingly) to control P. This ex-
ample indicates that in order to obtain stronger (and more effective) notions of
controllability, we need to compute the set of controllable states by taking into
account the real capabilities of the other modules composing the system. We

introduce three such stronger notions of controllability: constrained, lazy, and
bounded controllability. Our experimental results demonstrate that there is a
distinct advantage in using these stronger notions of controllability.

Lazy controllability can be applied to systems in which all the modules are
lazy, i.e., if the modules always have the option of leaving unchanged the val-
ues of the variables they control [AH99]. Thus, laziness models the assumption
of speed independence, and is used heavily in the modeling of asynchronous
systems. If the environment is lazy, then there is no way of preventing the envi-
ronment from always choosing its “stutter” move. Hence, we can strengthen the
definition of controllability by requiring that the stutter strategy of the environ-
ment, rather than an arbitrary strategy, must be able to control. In the above
example, the state s of module P is clearly not lazily controllable, since a change
of = cannot be controlled by leaving y unchanged. Constrained controllability is
a notion of controllability that can be used also when the system is not lazy.
Constrained controllability takes into account, in computing the sets of control-
lable states, which moves are possible for the environment. To compute the set
of constrainedly controllable states of a module P, we construct a transition rela-
tion that constrains the moves of the environment. This is done by automatically
abstracting away from the transition relations of the other modules the variables
that are not shared by P. We then define the controllable states by considering
a game between P and a so constrained environment. Finally, bounded controlla-
bility is a notion that can again be applied to any system, and it generalizes both
lazy and constrained controllability. It considers environments that have both a
set of unavoidable moves (such as the lazy move for lazy systems), and possible
moves (by considering constraints to the moves, similarly to constrained con-
trollability). We also introduce a technique called iterative strengthening, which
can be used to strengthen any of these notions of controllability. In essence, it
is based on the idea that a module, in order to control another module, cannot
use a move that would cause it to leave its own set of controllable states.

It is worth noting that the techngiues developed in this paper can also be used
in an informal verification environment: after computing the uncontrollability
states for each of the components, one can simulate the design and check if any
of these uncontrollable states can be reached. This is similar to the techniques
retrograde analysis [JSAA97], or target enlargement [YD98] in simulation. The
main idea of retrograde analysis and target enlargement is that the set of states
that violate the invariants are “enlarged” with their preimages, and hence the
chances of hitting this enlarged set is increased. Our techniques not only add
modularity in the computation of target enlargemen, they also allow one to
detect the violation of liveness properties through simulation.

The algorithmic control of reactive systems has been studied extensively
before (see, e.g., [RW89,EJ91,Tho95]). However, the use of controllability in
automatic verification is relatively new (see, e.g., [KV96,AHK97, AdAHM99]).
The work closest to ours is [ASSSV94], where transition systems for components
are minimized by taking into account if a state satisfies or violates a given CTL
property under all environments. In [Dil88], autofailure captures the concept

that no environment can prevent failure and is used to compare the equivalence
of asynchronous circuits.

2 Preliminaries

Given a set V of typed variables, a state s over V is an assignment for V that
assigns to each z € V a value s[z]. We indicate with States(V) be the set of
all states over V, and with P(V) the set of predicates over V. Furthermore, we
denote by V' = {z' | z € V} the set obtained by priming each variable in V.
Given a predicate H € P(V), we denote by H' € P(V') the predicate obtained
by replacing in H every z € V with ' € V'. A module P = (Cp,Ep,Ip,Tp)
consists of the following components:

1. A (finite) set Cp of controlled variables, each with finite domain, consisting
of the variables whose values can be accessed and modified by P.

2. A (finite) set Ep of external variables, each with finite domain, consisting of
the variables whose values can be accessed, but not modified, by P.

3. A transition predicate Tp € P(Cp UEPp UCh).

4. An initial predicate Ip € P(Cp).

We denote by Vp = Cp U Ep the set of variables mentioned by the module.
Given a state s over Vp, we write s |= Ip if Ip is satisfied under the variable
interpretation specified by s. Given two states s, s’ over Vp, we write (s,s') | Tp
if predicate Tp is satisfied by the interpretation that assigns to z € Vp the
value s[z], and to ' € Vp the value s'[z]. A module P is non-blocking if the
predicate Ip is satisfiable, i.e., if the module has at least one initial state, and if
the assertion VVp . 3Cp . Tp holds, so that every state has a successor.

A trace of module P is a finite sequence of states sg,$1,82,...8, €
States(Vp), where n > 0 and (sg,sky1) | Tp for all 0 < k < n; the trace
is nitial if so = Ip. We denote by L(P) the set of initial traces of module P.
For a module P, we consider specifications expressed by linear-time temporal
logic (LTL) formulas whose atomic predicates are in P(Vp). As usual, given an
LTL formula ¢, we write P |= ¢ iff o |= ¢ for all o € L(P).

Two modules P and @ are composable if Cp N Cqo = B; in this case, their
parallel composition P || Q is defined as: P||Q = (Cp U Cq,(Ep U &) \ (Cp U
Co),Ip NIg,Tp A TQ). Note that composition preserves non-blockingness.

We assume that all predicates are represented in such a way that boolean
operations and existential quantification of variables are efficiently computable.
Likewise, we assume that satisfiability of all predicates can be checked efficiently.
Binary decision diagrams (BDDs) provide a suitable representation [Bry86].

Controllability. We can view the interaction between a module P and its envi-
ronment as a game. At each round of the game, the module P chooses the next
values for controlled variables Cp, while the environment chooses the next values
for the external variables £p. Given an LTL specification ¢, we say that a state
s of P is controllable with respect to ¢ if the environment can ensure that all

traces from s satisfy ¢. To formalize this definition, we use the notion of strat-
egy. A module strategy 7 for P is a mapping 7 : States(Vp)" — States(Cp)
that maps each finite sequence sg,s1,...,8; of module states into a state
(S0, 51,---,8;) such that (sg,m(sq,51,...,8;)) E Tp. Similarly, an environ-
ment strategy 7 for P is a mapping 1 : States(Vp)T — States(Ep) that maps
each finite sequence of module states into a state specifying the next values
of the external variables. Given two states s; and sy over two disjoint sets
of variables V; and V,, we denote by s; X sy the state over V; U Vs that
agrees with s; and so over the common variables. With this notation, for all
s € States(Vp) and all module strategies m and environment strategies 7, we
define Outcome(s,m,n) € States(Vp)“ to be the trace so, s1, s2, ... defined by
so = s and by sg+1 = 7(s0,81,---,8k) X n(s0,51,.-.,5k). Given an LTL formula
@ over Vp, we say that a state s € States(Vp) is controllable with respect to ¢
iff there is an environment strategy 7 such that, for every module strategy =, we
have Outcome(s,m,n) | . We let Ctr(P,¢) be the predicate over Vp defining
the set of states of P controllable with respect to ¢.

Roughly, a state of P is controllable w.r.t. ¢ exactly when there is an envi-
ronment E for P such that all paths from s in P || E satisfy . Since in general
E can contain variables not in P, to make the above statement precise we need
to introduce the notion of extension of a state. Given a state s over V and a
state ¢t over U, with V C U, we say that t is an extension of s if s[z] = t[z] for
all x € V. Then, there is module E composable with P such that all paths from
extensions of s in P || E satisfy ¢ iff s € Ctr(P, ¢) [AdAHM99].

3 Early Detection of Invariant Violation

Forward and backward state exploration. Given a module R and a predi-
cate ¢ over Vg, the problem of invariant verification consists in checking whether
R = 0O¢. We can solve this problem using classic forward or backward state ex-
ploration. Forward exploration starts with the set of initial states of R, and
iterates a post-image computation, terminating when a state satisfying - has
been reached, or when the set of reachable states of R has been computed. In the
first case we conclude R £ Ogp; in the second, R | Oy. Backward exploration
starts with the set —p of states violating the invariant, and iterates a pre-image
computation, terminating when a state satisfying I'r has been reached, or when
the set of all states that can reach —p has been computed. Again, in the first case
we conclude R [~ Og and in the second R |= Oy. If the answer to the invariant
verification question is negative, these algorithms can also construct a counterex-
ample s, ..., 8, of minimal length leading from s = Ig to s, = —p, and such
that for 0 <4 < m we have (s;, si+1) = Tr. If our aim is to find counterexamples
quickly, an algorithm that alternates forward and backward reachability is likely
to explore fewer states than the two unidirectional algorithms. The algorithm
alternates post-image computations starting from Ir with pre-image computa-
tions starting from —, terminating as soon as the post and pre-images intersect,
or as soon as a fixpoint is reached. We denote any of these three algorithms (or

variations thereof) by InvCheck(R,). We assume that InvCheck(R, p) returns
answer YES or NO, depending on whether R = Oy or R [~ Oy, along with a
counterexample in the latter case.

Controllability and early error detection. Given n > 1 modules
Py,Ps,...,P, and a predicate ¢ € P(J;_, Vp,), the modular version of the invari-
ant verification problem consists in checking whether P || --- | P, E O¢. We
can use the notion of controllability to try to detect a violation of the invariant
o in fewer iterations of post or pre-image computation than the forward and
backward exploration algorithms described above. The idea is to pre-compute
the states of each module Pi,..., P, that are controllable w.r.t. dp. We can
then detect a violation of the invariant as soon as we reach a state s that is not
controllable for some of the modules, rather than waiting until we reach a state
actually satisfying —¢. In fact, we know that from s there is a path leading to
- in the global system: for this reason, if a state is not controllable for some of
the modules, we say that the state is doomed.

To implement this idea, let R = Py || --- || Py, and for 1 < i < n, let
absi(¢) = I(Vr \ Vp,) . ¢ be an approximation of ¢ that involves only the
variables of P;; note that ¢ — abs;(p). For each 1 < ¢ < n, we can compute
the set Ctr(P;,Oabs;(¢)) of controllable states of P; w.r.t. Oabs;(y) using a
classical algorithm for safety games. For a module P, the algorithm uses the
uncontrollable predecessor operator UPrep : P(Vp) — P(Vp), defined by

UPrep(X) = V€, .3CL . (Tp A X') .

The predicate UPrep(X) defines the set of states from which, regardless of the
move of the environment, the module P can resolve its internal nondeterminism
to make X true. Note that a quantifier switch is required to to compute the
uncontrollable predecessors, as opposed to the computations of pre-images and
post-images, where where only existential quantification is required. For a mod-
ule P and an invariant O¢p, we can compute the set Ctr(P,O¢) of controllable
states of P with respect to Op by letting Uy = —¢, and for k > 0, by letting

Ur =~ V UPrep(Ug—_1), (1)

until we have Uy, = Uy _1, at which point we have Ctr(P,O¢) = —Uy. For k >0
the set Uy consists of the states from which the environment cannot prevent
module P from reaching —p in at most k steps. Note that for all 1 < ¢ < n, the
computation of Ctr(P;,Oabs;(p)) is carried out on the state space of module
P;, rather than on the (larger) state space of the complete system. We can then
solve the invariant checking problem P || -- - || P, |E Op by executing

InvCheck (P || -+ || P, @ A /\ Ctr(P;,Oabs;(p))) - (2)
=0

It is necessary to conjoin ¢ to the set of controllable states in the above check,
because for 1 <4 < n, predicate abs;(y) (and thus, possibly, Ctr(P;, Oabs;(¢)))

may be weaker than . If check (2) returns answer YES, then we have immedi-
ately that Py || --- || P, = Og. If the check returns answer NO, we can conclude
that Py || --- || Pn & Op. In this latter case, the check (2) also returns a partial
counterexample Sg, 51, ...,5m, wWith s, & Ctr(P;,0¢;) for some 1 < j < n.
If s, = —, this counterexample is also a counterexample to Op. Otherwise,
to obtain a counterexample So, ..., Sm, Sm+1s- - - » Smtr With Spmir & ©, we pro-
ceed as follows. Let Uy, Uy, ..., Uy be the predicates computed by Algorithm 1
during the computation of Ctr(P;,O¢;); note that s, = Uy. For I > 0, given
Sm+i—1, We pick spyq; such that sp,4 '= Uk_; and (3m+l—1,5m+1) '= /\?:1 Tp,.
The process terminates as soon as we reach an ! such that sy, |= —¢: since the
implication Uy — —¢ holds, this will occur in at most k steps.

4 Lazy and Constrained Controllability

In the previous section, we have used the notion of controllability to compute
sets of doomed states, from which we know that there is a path violating the
invariant. In order to detect errors early, we should compute the largest possible
sets of doomed states. To this end, we introduce two notions of controllability
that can be stronger than the classical definition of the previous section. The
first notion, lazy controllability, can be applied to systems that are composed
only of lazy modules, i.e. of modules that need not react to their inputs. Several
communication protocols can be modeled as the composition of lazy modules.
The second notion, constrained controllability, can be applied to any system.

Lazy controllability. A module is lazy if it always has the option of leav-
ing its controlled variables unchanged. Formally, a module P is lazy if we have
(s,8) = Tp for every state s over Vp. If all the modules composing the system are
lazy, then we can re-examine the notion of controllability described in Section 3
to take into account this fact. Precisely, we defined a state to be controllable
w.r.t. an LTL property ¢ if there is a strategy for the environment to ensure
that the resulting trace satisfies ¢, regardless of the strategy used by the system.
But if the environment is lazy, we must always account for the possibility that
the environment plays according to its lazy strategy, in which the values of the
external variables of the module never change. Hence, if all modules are lazy,
there is a second condition that has to be satisfied for a state to be controllable:
for every strategy of the module, the lazy environment strategy should lead to
a trace that satisfies ¢. It is easy to see, however, that this second condition
for controllability subsumes the first. We can summarize these considerations
with the following definition. For 1 < i < m, denote by 7’ the lazy environ-
ment strategy of module F;, which leaves the values of the external variables
of P; always unchanged. We say that a state s € States(Vp,) is lazily control-
lable with respect to a LTL formula v iff, for every module strategy 7, we have
Outcome(s,m,n%) = . We let LCtr(P, ¢) be the predicate over Vp defining the
set of states of P that are lazily controllable with respect to .

We can compute for the invariant Oy the predicate LCtr(P, Og) by replacing
the operator UPre in Algorithm 1 with the operator LUPre : P(Vp) — P(Vp),

the lazily uncontrollable predecessor operator, defined by:
LUPrep(X) = 36}3 . (Tp N X’)[Ep/g};] .

where (Tp A X")[Ep/Ep] is obtained from Tp A X' by replacing each variable
z' € £p with z € Ep. Note that LUPrep X computes a superset of UPrep X, and
therefore the set LCtr(P,O¢) of lazily controllable states is always a subset of
the controllable states Ctr(P,Oyp).

Givenn > 1lazy modules Py, P, ..., P, and a predicate € P(U;_; Vp,), let
R=Py| - || Pn, and for all 1 <i < n. We can check whether P, || --- || P, |=
Oy by executing InvCheck(R, oA\, LCtr(P;,0abs;(y))). If this check returns
answer NO, we can construct a counterexample to Op as in Section 3.

Constrained controllability. Consider again n > 1 modules Py, P, ..., P,
together with a predicate ¢ € P(UJ.—, Vp,). In Section 3, we defined a state to
be controllable if it can be controlled by an unconstrained environment, which
can update the external variables of the module in an arbitrary way. However,
in the system under consideration, the environment of a module P; is @); =
Pl - | Bi—i | Pigr || -+ || Pn, for 1 <4 < n. This environment cannot update
the external variables of P; in an arbitrary way, but is constrained in doing so by
the transition predicates of modules P;, for 1 < j <n, j # 4. If we compute the
controllability predicate with respect to the most general environment, instead
of Q;, we are giving to the environment in charge of controlling P; more freedom
than it really has. To model this restriction, we can consider games in which the
environment of P; is constrained by a transition predicate over Vp,UEp, that over-
approximates the transition predicate of @);. We rely on an over-approximation
to avoid mentioning all the variables in U_?:l Vp;, since this would enlarge the
state space on which the controllability predicate is computed.

These considerations motivate the following definitions. Consider a module P
together with a transition predicate H over Vp UEp. An H-constrained strategy
for the environment of P is a strategy 1 : States(Vp)" — States(Ep) such
that, for all sg,s1,...,8; € States(Vp)+, we have (sg,n(so,$1,..-,5k)) = H.
Given an LTL formula ¢ over Vp, we say that a state s € States(Vp) is H-
controllable if there is an H-constrained environment strategy n such that, for
every module strategy m, we have Qutcome(s,m,n) = ¢. We let CCtr(P, {(H))p)
be the predicate over Vp defining the set of H-controllable states of P w.r.t.
©.! For invariant properties, the predicate CCtr(P, {H)0O¢) can be computed
by replacing in Algorithm 1 the operator UPre with the operator CUPrep[H] :
P(Vp) — P(Vp), defined by:

CUPrep[H|(X) =VEp . (H = 3Cp . (Tp A X)) .
When H = true, CUPrep[H](X) = UPrep(X); for all other stronger predicates
H, the H-uncontrollable predecessor operator CUPrep[H](X) will be a superset

LIf Ey is a module composable with P having transition relation H, the predicate
CCtr(P, (H))¢) defines exactly the same set of states as the ATL formula (E)O¢
interpreted over P || Exg [AHK97].

of UPrep(X), and therefore the set CCtr(P, {(H)y) of H-controllable states will
be a subset of the controllable states Ctr(P, Ogp).
Given a system R = Py||P||...|| P, and a predicate ¢ € P(Vg),for1 <i<n
we let
Hi = Njeq.piay Ui - 3U; - T,y

where U; = Vp;, \ Vp,. We can then check whether R |= Og by executing
InvCheck(R, pAN;—, CCtr(P;, (H;)Oabs;(p))). If this check returns answer No,
we can construct a counterexample proceeding as in Section 3.

5 Experimental Results

We applied our methods for early error detection to two examples: a distributed
database protocol and a wireless communication protocol. We implemented all
algorithms on top of the model checker MocHA [AHM™98], which relies on the
BDD package and image computation engine provided by VIS [BHSV*96].

Demarcation protocol. The demarcation protocol is a distributed protocol
for maintaining numerical constraints between distributed copies of a database
[BGM92]. We considered an instance of the protocol that manages two sites that
sell and buy back seats on the same airplane; each site is modeled by a module.
In order to minimize communication, each site maintains a demarcation variable
indicating the maximum number of seats it can sell autonomously; if the site
wishes to sell more seats than this limit, it enters a negotiation phase with the
other site. The invariant states that the total number of seats sold is always less
than the total available.

In order to estimate the sensitivity of our methods to differences in modeling
style, we wrote three models of the demarcation protocol; the models differ in
minor details, such as the maximum number of seats that can be sold or bought
in a single transaction, or the implementation of the communication channels.
In all models, each of the two modules controls over 20 variables, and has 8-10
external variables; the diameter of the set of reachable states is between 80
and 120. We present the number of iterations required for finding errors in the
three models using the various notions of controllability in Table 1. Some of the
errors occurred in the formulation of the models, others were seeded at random.

Two-chip intercom. The second example is from the Two-Chip Intercom
(TCI) project of the Berkeley Wireless Research Center [BWR]. TCI is a wire-
less local network which allows approximately 40 remotes to transmit voice with
point-to-point and broadcast communication. The operation of the network is
coordinated by a base station, which assigns channels to the remotes through a
TDMA scheme. Each remote and base station will be implemented in a two-chip
solution, one for the digital component and one for the analog. The TCI protocol
involves four layers: the functional layer (UI), the transport layer, the medium
access control (MAC) layer and the physical layer. The UI provides an interface
between the user and the remote. The transport layer accepts service requests
from the UI, defines the corresponding messages to be transmitted across the

10

Error|| L| C|R| G Error|| L| C|R| G Error|| L| C|R| G
el |{19|19|19|24 el |(30(30(35(35 el |{14|18|18|18
e2 |31|31|31|36 e2 (|40(40|44|44 e2 ||14|18|18(18
e3 [|19|19(19(24 ed |(28(28(33(33 e3 ||14|18|18(18
ed ||18|23(24|24 ed |[|18(18|25(25 ed |(|12|16(16|16

(a) Model 1. (b) Model 2. (c) Model 3.

Table 1. Number of iterations required in global state exploration to find errors in
3 models of the demarcation protocol. The errors are el,...,ed. The columns are L
(lazy controllability), C (constrained controllability), R (regular controllability), and
G (traditional global state exploration).

network, and transmits the messages in packets. The transport layer also accepts
and interprets the incoming packets and sends the messages to the UL. The MAC
layer implements the TDMA scheme. The protocol stack for a remote is shown
in Figure 1(a). Each of these blocks are described by the designers in Esterel
and modeled in Polis using Codesign Finite State Machines [BCGT97].

There are four main services available to a user: ConnReq, AddReq, RemReq
and DiscReq. To enter the network, a remote sends a connection request, Con-
nReq, together with the id of the remote, to the base station. The base station
checks that the remote is not already registered, and that there is a free time-slot
for the remote. It then registers the remote, and sends a connection grant back
to the the remote. If a remote wishes to leave the network, it sends DiscReq to
the base station, which unregisters the remote. If two or more remotes want to
start a conference, one of them sends AddReq to the base station, together with
the id’s of the remotes with which it wants to communicate. The base station
checks that the remotes are all registered, and sends to each of these remotes an
acknowledgment and a time-slot assignment for the conference. When a remote
wishes to leave the conference, it sends a RemReq request to the base station,
which reclaims the time slot allocated to the remote.

We consider a TCI network involving one remote and one base station. The
invariant states that if a remote believes that it is connected to the network,
then the base station has this remote registered. This property involves the
functional and transport layers. In our experiment, we model the network in
reactive modules [AH99] The modules that model the functional and transport
layers for both the remote and the base station are translated directly from the
corresponding CFSM models; based on the protocol specification, we provide
abstractions for the MAC layer and physical layer as well as the channel between
the remote and the base station. Due to the semantics of CFSM, the modules are
lazy, and therefore, lazy controllability applies. The final model has 83 variables.
The number of iterations required to discover the various errors, some incurred
during the modeling and some seeded in, are reported in Figure 1(b).

11

ulaw Error|| L| C|R| G
el |(24|25|27|27
e2 ||39|41(41|41
ed ||16|21(23|23
ed |(24|25|27|27
eb ||57(59(59(59
c S e6 |(|16/19(21|21

1.6Mbps (b) Iterations

(a) Protocol Stack.

Fig. 1. The TCI protocol stack and the number of iterations of global state exploration
to discover the error.

Results on BDD sizes and discussion. In order to isolate the unpredictable
effect of dynamic variable ordering on the BDD sizes, we conducted, for each
error, two sets of experiments. In the first set of experiments, we turned off dy-
namic variable ordering, but supplied good initial orders. In the second, dynamic
variable ordering was turned on, and a random initial order was given. Since the
maximum BDD size is often the limiting factor in formal verification, we give
results based on the maximum number of BDD nodes encountered during ver-
ification process, taking into account the BDDs composing the controllability
predicates, the reachability predicate, and the transition relation of the system
under consideration. We only compare our results for the verification using lazy
controllability and global state exploration, since these are the most significant
comparisons. Due to space constraint, we give results for model 3 of the demar-
cation protocol as well as the TCI protocol.

Without dynamic variable ordering. For each error, we recorded the maximum
number of BDD nodes allocated by the BDD manager encountered during verifi-
cation process. The results given in Table 2(a) and 2(b) are the averages of four
experiment runs, each with a different initial variable order. They show that
often the computation of the controllability predicates helps reduce the total
amount of required memory by about 10-20%. The reason for this savings can
be attributed to the fact that fewer iterations in global state exploration avoids
the possible BDD blow-up in subsequent post-image computation.

With dynamic variable ordering. The analysis on BDD performance is more
difficult if dynamic variable ordering is used. We present the results in Tables 2(c)
and 2(d) which show the averages of nine experiment runs on the same models
with dynamic variable ordering on. Dynamic variable ordering tries to minimize

12

Lazy Global

Lazy Global Err| Control | Total Total
Err Control| Total Total el [4.8 (0.4)] 6.3 (0.4)][6.7 (0.5)
el ||4.4 (0.8)|6.6 (0.1)|| 7.9 (0.8) e2 (/5.4 (0.6)| 8.6 (0.5)|| 9.0 (0.4)
e2 (|4.1 (0.1)|7.2 (0.6)|| 9.2 (2.4) e3 (/5.8 (0.4)| 6.5 (1.0)|| 7.7 (1.6)
e3 ||4.4 (0.1)(9.0 (0.3)||14.6 (0.3) ed |[5.4 (0.1)[10.1 (0.1){|12.0 (0.3)
ed ||7.3 (0.9)(8.7 (0.1)[|11.1 (2.1) e5 |[6.6 (0.5)40.7 (1.8)[|43.8 (0.2)
e6 ||5.6 (0.6)| 6.8 (1.6)|| 7.7 (1.9)

(a) Demarcation Protocol (Off).
(b) TCI (Off).

Lazy Global
Lazy Global Err| Control | Total Total

Err|| Control | Total || Total el [4.2 (0.9)] 7.2 (0.8)]] 7.3 (0.9)
e1 3.0 (0.4)]6.9 (0.7)] 7.5 (0.4) e2 (3.7 (0.6)[10.1 (2.4)[|11.0 (2.3)
e2 (3.5 (1.0)]6.7 (0.4)|| 8.1 (0.8) e3 4.5 (0.5) 7.4 (1.5)|| 6.4 (0.6)
e3 3.6 (0.5)[8.9 (1.3)[|12.7 (1.9) e4 3.8 (0.3)[11.4 (2.9)[|16.9 (7.4)
ed ||4.4 (0.4)[9.0 (0.9)||11.8 (2.6) e5 ||4.0 (0.4)60.2 (19.1)|[73.7 (29.8)

e6 4.6 (0.5)] 7.9 (0.9)|| 6.8 (0.9)

(c) Demarcation Protocol (On).
(d) TCI (On).

Table 2. Average maximum number of BDD nodes required for error detection during
the controllability (Control) and reachability computation (Total) phases. Dynamic
variable ordering was turned off in (a) and (b), and on in (c) and (d). The results are
given for lazy controllability and global state exploration. All data are in thousands of
BDD nodes, and the standard deviations are given in parenthesis.

the total size of all the BDDs, taking into account the BDDs representing the
controllability and the reachability predicates, as well as the BDDs encoding
the transition relation of the system. Hence, if the BDDs for the controllability
predicates are a sizeable fraction of the other BDDs, their presence slows down
the reordering process, and hampers the ability of the reordering process to
reduce the size of the BDD of the reachability predicate. Thus, while our methods
consistently reduce the number of iterations required in global state exploration
to discover the error, occasionally we do not achieve savings in terms of memory
requirements.

When the controllability predicates are small compared to the reachability
predicate, they do not interfere with the variable ordering algorithm. This ob-
servation suggests the following heuristics: one can alternate the iterations in
the computation of the controllability and reachability predicates in the fol-
lowing manner. At each iteration, the iteration in the controllability predicate
is computed only when its size is smaller than a threshold fraction (say, 50%)
of the reachability predicate. Otherwise, reachability iterations are carried out.

13

Another possible heuristics to reduce the size of the BDD representation of the
the controllability predicates is to allow approximations: our algorithms remain
sound and complete as long as we use over-approximations of the controllability
predicates.

6 Bounded Controllability and Iterative Strengthening

Bounded controllability. In lazy controllability, we know that there is a move
of the environment that is always enabled (the move that leaves all external
variables unchanged); therefore, that move must be able to control the mod-
ule. In constrained controllability, we are given the set of possible environment
moves, and we require that one of those moves is able to control the module.
We can combine these two notions in the definition of bounded controllability. In
bounded controllability, unlike in usual games, the environment may have some
degree of insuppressible internal nondeterminism. For each state, we are given a
(nonempty) set A of possible environment moves, as in usual games. In addition,
we are also given a (possibly empty) set B C A of moves that the environment
can take at its discretion, even if they are not the best moves to control the
module. We say that a state is boundedly controllable if (a) there is a move in A
that can control the state, and (b) all the moves in B can control the state. The
name bounded controllability is derived from the fact that the sets B and A are
the lower and upper bounds of the internal nondeterminism of the controller.

Given a module P, we can specify the lower and upper bounds for the en-
vironment nondeterminism using two predicates H', H* € P(Vp U £p). We can
then define the bounded uncontrollable predecessor operator BUPre[H!, HY] :
P(Vp) = P(Vp) by

BUPre[H', HY|(X) = [VE€p.(H* = Cp.(TpAX"))|V [3Ep.(H' AICp.(TpAX"))] .

Note that the quantifiers are the duals of the ones in our informal definition, since
this operator computes the uncontrollable states, rather than the controllable
ones. Note also that in general we cannot eliminate the first disjunct, unless
we know that 35 . H! holds at all s € States(P), as was the case for lazy
controllability. By substituting this predecessor operator to UPre in Algorithm 1,
given a predicate ¢ over Vp, we can compute the predicate BCtr[H!, H*|(P, Oy)
defining the states of P that are boundedly controllable w.r.t. Op. Given a system
R=Pi| --- || P, and a predicate ¢ over Vg, we can use bounded controllability
to compute a set of doomed states as follows. For each 1 < i < n, we let as usual
abs;(p) =3I(Vr \ Vp,) - , and we compute the lower and upper bounds by

Hi = Njettmniar Wi - Wi Tey s HE = Ny, vy Mo - U5 Ty

where for 1 < j < n, the set U;; = 1Z2 \ Vp, consists of the variable of
P; not present in P;. We can then check whether R |= O¢ by executing
InvCheck(R, ¢ A N\, BCtr[H!, H*|(P;,Oabs;(¢))). If this check fails, we can
construct counterexamples by proceeding as in Section 3.

14

Iterative strengthening. We can further strengthen the controllability pred-
icates by the process of iterative strengthening. This process is based on the
following observation. In the system R = Py || --- || P,, in order to control P;,
the environment of P; must not only take transitions compatible with the tran-
sition relation of the modules P;, for j € {1,...,n} \ {i}, but these modules
must also stay in their own sets of controllable states. This suggests that when
we compute the controllable states of P;, we take into account the controllability
predicates already computed for the other modules. For 1 < i < n, if §; is the
controllability predicate of module P;, we can compute the upper bound to the
environment nondeterminism by

where § = 6;,...,0,. For all 1 < i < n, we can compute a sequence of in-
creasingly strong controllability predicates by letting 9 = T and, for k > 0, by
SFHL = BOtr[HE, HH(6%)](P;, 0¢). For all 1 < i < n and all k > 0, predicate
Z““ is at least as strong as 6F. We can terminate the computation at any k > 0
(reaching a fixpoint is not needed), and we can verify R = Op by executing
InvCheck(R,p A N1, 6F). As k increases, so does the cost of computing these
predicates. However, this increase may be offset by the faster detection of errors

in the global state-exploration phase.

Discussion. The early error detection techniques presented in the previous sec-
tions for invariants can be straightforwardly extended to general linear temporal-
logic properties. Given a system R = P, || - - || P, and a general LTL formula v
over Vg, we first compute for each 1 < i < n the predicate §;, defining the con-
trollable states of P; with respect to . This computation requires the solution
of w-regular games [EJ91,Tho95]; in the solution, we can use the various notions
of controllability developed in this paper, such as lazy, constrained, or bounded
controllability. Then, we check whether R = ¢ ADO(A]_, 8;): as before, if a state
that falsifies §; for some 1 < i < n is entered, we can immediately conclude that
R £ 4. For certain classes of properties, such as reachability properties, it is con-
venient to perform this check in two steps, first checking that R |= O(AL_, d;)
(enabling early error detection) and then checking that R |= 4.

Acknowledgements. We thank Andreas Kuehlmann for pointing out the con-
nection of this work with target enlargement.

References

[AJAHM99] R. Alur, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Automating
modular verification. In CONCUR 99: Concurrency Theory, LNCS. Springer-
Verlag, 1999.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7-48, 1999.

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In Proc. 38th IEEE Symp. Found. of Comp. Sci., pages 100-109. IEEE
Computer Society Press, 1997.

15

[AHM™98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and
S. Tasiran. Mocha: modularity in model checking. In CAV 98: Computer Aided
Verification, volume 1427 of LNCS, pages 521-525. Springer-Verlag, 1998.

[ASSSV94] A. Aziz, T.R. Shiple, V. Singhal, and Alberto L. Sangiovanni-Vincentelli.
Formula-dependent equivalence for CTL model checking. In CAV 94: Com-
puter Aided Verification, LNCS. Springer-Verlag, 1994.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking with-
out BDDs. In Proc. of TACAS: Tools and Algorithms for the Construction and
Analysis of Systems, volume 1579 of LNCS, pages 193-207. Springer-Verlag,
1999.

[BCG*97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tab-
bara. Hardware-Software Co-Design of Embedded Systems: The Polis Ap-
proach. Kluwer Academic Press, 1997.

[BGM92] D. Barbara and H. Garcia-Molina. The demarcation protocol: a technique
for maintaining linear arithmetic constraints in distributed database systems.
In EDBT’92: 8rd International Conference on Extending Database Technology,
volume 580 of LNCS, pages 373-388. Springer-Verlag, 1992.

[BHSVt96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan,
S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A system for verification
and synthesis. In CAV 96: Computer Aided Verification, volume 1102 of LNCS,
pages 428-432. Springer-Verlag, 1996.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.

[BWR] Berkeley wireless research center. http://bwrc.eecs.berkeley.edu.

[Dil88] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1988.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 82nd Symp. on Foundations of Computer Science
(FOCS), pages 368-377, 1991.

[HKQ98] T.A. Henzinger, O. Kupferman, and S. Qadeer. From prehistoric to
postmodern symbolic model checking. In CAV 98: Computer Aided Verifi-
cation, volume 1427 of LNCS, pages 195-206. Springer-Verlag, 1998.

[HQRI8] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guaran-
tee: methodology and case studies. In CAV 98: Computer Aided Verification,
volume 1427 of LNCS, pages 440-451. Springer-Verlag, 1998.

[JSAA97] J. Juan, J. Shen, J. Abraham, and A. Aziz. On combining formal and infor-
mal verification. In CAV 97: Computer Aided Verification, LNCS. Springer-
Verlag, 1997.

[KV96] O. Kupferman and M.Y. Vardi. Module checking. In CAV 96: Computer Aided
Verification, volume 1102 of LNCS, pages 75-86. Springer-Verlag, 1996.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.
IEEE Transactions on Control Theory, 77:81-98, 1989.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. of 12th
Annual Symp. on Theor. Asp. of Comp. Sci., volume 900 of LNCS, pages 1-13.
Springer-Verlag, 1995.

[YD98] C.H. Yang and D.L. Dill. Validation with guided search of the state space. In
Design Automation Conference, June 1998.

16

